3.1.69 \(\int \frac {1}{x^2 \sqrt {a+c x^2} (d+e x+f x^2)} \, dx\) [69]

3.1.69.1 Optimal result
3.1.69.2 Mathematica [C] (verified)
3.1.69.3 Rubi [A] (verified)
3.1.69.4 Maple [B] (verified)
3.1.69.5 Fricas [F(-1)]
3.1.69.6 Sympy [F]
3.1.69.7 Maxima [F]
3.1.69.8 Giac [F(-2)]
3.1.69.9 Mupad [F(-1)]

3.1.69.1 Optimal result

Integrand size = 27, antiderivative size = 367 \[ \int \frac {1}{x^2 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=-\frac {\sqrt {a+c x^2}}{a d x}-\frac {f \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right ) \text {arctanh}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {f \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right ) \text {arctanh}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}+\frac {e \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d^2} \]

output
e*arctanh((c*x^2+a)^(1/2)/a^(1/2))/d^2/a^(1/2)-(c*x^2+a)^(1/2)/a/d/x-1/2*f 
*arctanh(1/2*(2*a*f-c*x*(e-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2 
*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2))*(e^2-2*d*f+e*(-4*d*f+e^2 
)^(1/2))/d^2*2^(1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^ 
2)^(1/2)))^(1/2)+1/2*f*arctanh(1/2*(2*a*f-c*x*(e+(-4*d*f+e^2)^(1/2)))*2^(1 
/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2))*(e 
^2-2*d*f-e*(-4*d*f+e^2)^(1/2))/d^2*2^(1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*( 
e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)
 
3.1.69.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.39 (sec) , antiderivative size = 298, normalized size of antiderivative = 0.81 \[ \int \frac {1}{x^2 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=-\frac {d \sqrt {a+c x^2}+2 \sqrt {a} e x \text {arctanh}\left (\frac {\sqrt {c} x-\sqrt {a+c x^2}}{\sqrt {a}}\right )+a x \text {RootSum}\left [a^2 f+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {a e f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )+2 \sqrt {c} e^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-2 \sqrt {c} d f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-e f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{a \sqrt {c} e+4 c d \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ]}{a d^2 x} \]

input
Integrate[1/(x^2*Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]
 
output
-((d*Sqrt[a + c*x^2] + 2*Sqrt[a]*e*x*ArcTanh[(Sqrt[c]*x - Sqrt[a + c*x^2]) 
/Sqrt[a]] + a*x*RootSum[a^2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 
 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (a*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] 
 - #1] + 2*Sqrt[c]*e^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - 2*Sqr 
t[c]*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - e*f*Log[-(Sqrt[c]*x 
) + Sqrt[a + c*x^2] - #1]*#1^2)/(a*Sqrt[c]*e + 4*c*d*#1 - 2*a*f*#1 - 3*Sqr 
t[c]*e*#1^2 + 2*f*#1^3) & ])/(a*d^2*x))
 
3.1.69.3 Rubi [A] (verified)

Time = 1.14 (sec) , antiderivative size = 367, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {-d f+e^2+e f x}{d^2 \sqrt {a+c x^2} \left (d+e x+f x^2\right )}-\frac {e}{d^2 x \sqrt {a+c x^2}}+\frac {1}{d x^2 \sqrt {a+c x^2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {f \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \text {arctanh}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {f \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \text {arctanh}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {e \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d^2}-\frac {\sqrt {a+c x^2}}{a d x}\)

input
Int[1/(x^2*Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]
 
output
-(Sqrt[a + c*x^2]/(a*d*x)) - (f*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])*ArcTan 
h[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2 
*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d^2*Sqrt[e^2 - 4* 
d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) + (f*(e^2 - 2* 
d*f - e*Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/( 
Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x 
^2])])/(Sqrt[2]*d^2*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sq 
rt[e^2 - 4*d*f])]) + (e*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/(Sqrt[a]*d^2)
 

3.1.69.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.1.69.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(732\) vs. \(2(322)=644\).

Time = 0.81 (sec) , antiderivative size = 733, normalized size of antiderivative = 2.00

method result size
risch \(-\frac {\sqrt {c \,x^{2}+a}}{a d x}-\frac {\frac {4 f e \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {c \,x^{2}+a}}{x}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right ) \left (e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {a}}+\frac {f \left (-e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {2}\, \ln \left (\frac {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\sqrt {-4 d f +e^{2}}\, \left (e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}-\frac {f \left (e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {2}\, \ln \left (\frac {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {-2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\sqrt {-4 d f +e^{2}}\, \left (-e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}}{d}\) \(733\)
default \(\frac {4 f \sqrt {c \,x^{2}+a}}{\left (-e +\sqrt {-4 d f +e^{2}}\right ) \left (e +\sqrt {-4 d f +e^{2}}\right ) a x}+\frac {16 f^{2} e \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {c \,x^{2}+a}}{x}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right )^{2} \left (e +\sqrt {-4 d f +e^{2}}\right )^{2} \sqrt {a}}+\frac {4 f^{2} \sqrt {2}\, \ln \left (\frac {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\left (e +\sqrt {-4 d f +e^{2}}\right )^{2} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}-\frac {4 f^{2} \sqrt {2}\, \ln \left (\frac {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {-2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right )^{2} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}\) \(736\)

input
int(1/x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
-(c*x^2+a)^(1/2)/a/d/x-1/d*(4*f*e/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^ 
(1/2))/a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x)+f*(-e+(-4*d*f+e^2)^(1 
/2))/(-4*d*f+e^2)^(1/2)/(e+(-4*d*f+e^2)^(1/2))*2^(1/2)/(((-4*d*f+e^2)^(1/2 
)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^ 
2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/ 
2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1 
/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*( 
x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+ 
c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))-f*(e+(-4*d*f+e^2)^(1/ 
2))/(-4*d*f+e^2)^(1/2)/(-e+(-4*d*f+e^2)^(1/2))*2^(1/2)/((-(-4*d*f+e^2)^(1/ 
2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a* 
f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2 
)^(1/2)))+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2 
)^(1/2)*(4*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c-4*c*(e-(-4*d*f+e^2)^(1/2) 
)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2 
*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))))
 
3.1.69.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Timed out} \]

input
integrate(1/x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")
 
output
Timed out
 
3.1.69.6 Sympy [F]

\[ \int \frac {1}{x^2 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int \frac {1}{x^{2} \sqrt {a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \]

input
integrate(1/x**2/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)
 
output
Integral(1/(x**2*sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)
 
3.1.69.7 Maxima [F]

\[ \int \frac {1}{x^2 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int { \frac {1}{\sqrt {c x^{2} + a} {\left (f x^{2} + e x + d\right )} x^{2}} \,d x } \]

input
integrate(1/x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(c*x^2 + a)*(f*x^2 + e*x + d)*x^2), x)
 
3.1.69.8 Giac [F(-2)]

Exception generated. \[ \int \frac {1}{x^2 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Exception raised: AttributeError} \]

input
integrate(1/x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")
 
output
Exception raised: AttributeError >> type
 
3.1.69.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int \frac {1}{x^2\,\sqrt {c\,x^2+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \]

input
int(1/(x^2*(a + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)
 
output
int(1/(x^2*(a + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)